A numerical method for efficient 3D inversions using Richards equation

نویسندگان

  • R Cockett
  • L J Heagy
  • E Haber
چکیده

Fluid flow in the vadose zone is governed by Richards equation; it is parameterized by hydraulic conductivity, which is a nonlinear function of pressure head. Investigations in the vadose zone typically require characterizing distributed hydraulic properties. Saturation or pressure head data may include direct measurements made from boreholes. Increasingly, proxy measurements from hydrogeophysics are being used to supply more spatially and temporally dense data sets. Inferring hydraulic parameters from such datasets requires the ability to efficiently solve and deterministically optimize the nonlinear time domain Richards equation. This is particularly important as the number of parameters to be estimated in a vadose zone inversion continues to grow. In this paper, we describe an efficient technique to invert for distributed hydraulic properties in 1D, 2D, and 3D. Our algorithm does not store the Jacobian, but rather computes the product with a vector, which allows the size of the inversion problem to become much larger than methods such as finite difference or automatic differentiation; which are constrained by computation and memory, respectively. We show our algorithm in practice for a 3D inversion of saturated hydraulic conductivity using saturation data through time. The code to run our examples is open source and the algorithm presented allows this inversion process to run on modest computational resources. Submitted to: Inverse Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water.  So, the averaging method applied to compute hydraul...

متن کامل

An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

متن کامل

An investigation of temporal adaptive solution of Richards’ equation for sharp front problems

Accurate, reliable, efficient, and robust simulation of groundwater flow in the unsaturated zone for the problems that characterized by sharp fronts in both space and time is computationally expensive. The accurate numerical solution of these problems by standard approaches with uniform spatial and temporal discretization usually inefficient and simulation is too costly. Moreover, it is very di...

متن کامل

OPTIMAL SOLUTION OF RICHARDS’ EQUATION FOR SLOPE INSTABILITY ANALYSIS USING AN INTEGRATED ENHANCED VERSION OF BLACK HOLE MECHANICS INTO THE FEM

One of the most crucial problems in geo-engineering is the instability of unsaturated slopes, causing severe loss of life and property worldwide. In this study, five novel meta-heuristic methods are employed to optimize locating the Critical Failure Surface (CFS) and corresponding Factor of Safety (FOS). A Finite Element Method (FEM) code is incorporated to convert the strong form of the Richar...

متن کامل

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017